Joint hardware-software leakage minimization approach for the register file of VLIW embedded architectures
نویسندگان
چکیده
New applications demand very high processing power when run on embedded systems. Very Long Instruction Word (VLIW) architectures have emerged as a promising alternative to provide such processing capabilities under the given energy budget. However, in this new VLIW-based architectures, the register file is a very critical contributor to the overall power consumption and new approaches have to be proposed to reduce its power while preserving system performance. In this paper, we propose a novel joint hardware–software approach that reduces the leakage energy in the register files of these embedded VLIW architectures. This approach relies upon an energy-aware register assignment method and a hardware support that creates sub-banks in the global register file that can be switched on/off at run time. Our results indicate energy savings in the register file, after considering the overhead of the added extra hardware, up to 50% for modern multimedia embedded applications without performance degradation. We illustrate this approach using real-life applications running on these processors. We also illustrate the tradeoff between the area overhead vs. the gains in the leakage energy for the different strategies. r 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Compiler-assisted power optimization for clustered VLIW architectures
Clustered VLIW architectures solve the scalability problem associated with flat VLIW architectures by partitioning the register file and connecting only a subset of the functional units to a register file. However, inter-cluster communication in clustered architectures leads to increased leakage in functional components and a high number of register accesses. In this paper, we propose compiler ...
متن کاملCompiler-Driven Leakage Energy Reduction in Banked Register Files
Tomorrow’s embedded devices need to run high-resolution multimedia applications which need an enormous computational complexity with a very low energy consumption constraint. In this context, the register file is one of the key sources of power consumption and its inappropriate design and management can severely affect the performance of the system. In this paper, we present a new approach to r...
متن کاملRegister Allocation for VLIW DSP Processors with Irregular Register Files
A variety of new register file architectures have been developed for embedded processors in recent years, promoting hardware design to achieve low-power dissipation and reduced die size over traditional unified register file structures. This paper presents a novel register allocation scheme for a clustered VLIW DSP processor which is designed with distinctively banked register files in which po...
متن کاملEnergy-aware compilation and hardware design for VLIW embedded systems
Tomorrow’s embedded devices need to run multimedia applications demanding high computational power with low energy consumption constraints. In this context, the register file is a key source of power consumption and its inappropriate design and management severely affects system power. In this paper, we present a new approach to reduce the energy of shared register files in forthcoming embedded...
متن کاملLC-GRFA: global register file assignment with local consciousness for VLIW DSP processors with non-uniform register files
Embedded processors developed within the past few years have employed novel hardware designs to reduce the ever-growing complexity, power dissipation, and die area. Although using a distributed register file architecture is considered to have less read/write ports than using traditional unified register file structures, it presents challenges in compilation techniques to generate efficient code...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integration
دوره 41 شماره
صفحات -
تاریخ انتشار 2008